LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS

23MA1101

Credits:3

Instruction : 3 periods & 1 Tutorial/Week End Exam : 3 Hours Sessional Marks:40 End Exam Marks:60

Prerequisites: Matrices, Differentiation, Integration and Functions.

Course Objectives:

To provide the students with sufficient knowledge in calculus and matrix algebra, this can be used in their respective fields.

Course Outcomes: By the end of the course, students will be able to

1.	Apply elementary transformations to reduce the matrix into the echelon form and normal
	form to determine its rank and interpret the various solutions of system of linear equations.
2.	Identify the special properties of a matrix such as the eigen value, eigen vector, employ orthogonal transformations to express the matrix into diagonal form, quadratic form and canonical form.
3.	Equip themselves familiar with the functions of several variables.
4.	Evaluate double and triple integrals techniques over a region in two dimensional and three dimensional geometry.
5.	Express the given function in terms of sine and cosine.

CO-PO – PSO Mapping:

CO	РО										PSO				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	1							1	2			
CO2	3	2	1	1							1	2			
CO3	3	2	1	1							1	2			
CO4	3	2	1	1							1	2			
CO5	3	2	1	1							1	2			

Correlation levels 1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)

Mapping of Course Outcomes with Program Outcomes & Program Specific Outcomes:

CO	CO-PO-PSO Justification				
1	CO1 is a basic tool which is used to find a solution of a complex problem after reducing it into a system of linear equations in many areas of the engineering sciences.				
2	CO2 deals with eigen values, eigen vectors of a square matrix which are widely used in all the engineering branches like communications systems, Designing bridges, Machine learning.				
3	CO3 deals with partial derivatives which are widely used in all the branches of engineering sciences.				
4	CO4 delas with the techniques of multiple integrals which are used to find the area, volume and other physical and geometrical parameters in all the areas of engineering sciences.				
5	CO5 is used to represent the given periodic function as an infinite sum of cosine and sine terms.				

SYLLABUS

UNIT I

Linear Equations : Rank of matrix - Normal form of a matrix - PAQ form - Gauss Jordan method of finding the inverse - Consistency of linear system of equations.

Sections: 2.7 and 2.10.

UNIT II

Linear transformations and Quadratic forms : Eigen values - Eigen vectors - Properties of eigen values (without proofs) - Cayley Hamilton theorem (without proof) - Reduction of quadratic form to canonical form - Nature of the Quadratic form.

Sections: 2.13, 2.14, 2.15, 2.17 and 2.18.

UNIT III

Multivariable Calculus : Total derivatives - Chain rule - Change of variables - Jacobians - Taylor's series expansion of two variable function - Maxima and minima of functions of two variables - Method of Lagrange's multipliers.

Sections: 5.5, 5.6, 5.7, 5.9, 5.11 and 5.12.

UNIT IV

Multiple Integrals : Double integrals - Change of order of integration - Double integration in polar coordinates - Areas enclosed by plane curves - Triple integrals - Volumes of solids (by using double and triple integrals).

Sections: 7.1, 7.2, 7.3, 7.4, 7.5 and 7.6.

10 Periods

10 Periods

10 Periods

10 Periods

UNIT V

10 Periods

Fourier Series : Introduction - Euler's formulae (without proof) - Conditions for a Fourier expansion - Functions having points of discontinuity - Change of interval - Even and odd functions - Half range series.

Sections: 10.1, 10.2, 10.3, 10.4, 10.5, 10.6 and 10.7.

TEXT BOOKS:

1. B. S. Grewal, Higher Engineering Mathematics, 44/e, Khanna Publishers, 2017.

REFERENCE BOOKS:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2011.
- 2. N. P. Bali, Engineering Mathematics, Lakshmi Publications.
- 3. George B. Thomas, Maurice D. Weir and Joel Hass, Thomas, Calculus, 13/e, Pearson Publishers, 2013.
- 4. H. K. Dass, Advanced Engineering Mathematics, S. Chand and complany Pvt. Ltd.
- 5. Michael Greenberg, Advanced Engineering Mathematics, Pearson, Second Edition.